Stainless steel pipes are used to transport gas, hot and cold water, and other fluids in a safe manner. Small pipes have a welded joint in the middle of the length that you can’t see. Bigger pipes have either a welded joint or a riveted joint. Once such pipes have been manufactured, they are soaked in zinc solution. This process is referred to as Galvanizing, and is employed to prevent rusting of the pipe. The average lifespan of such pipes ranges from 25 to 50 years.

These pipes are lightweight and welded joints are used. They are installed on Open Supports and are also joined with Flanged Joints. These pipes are prone to bending and can be easily damaged by acids and alkali water. Repairing these types of pipes is challenging. Because of their lower wall thickness, these pipes are susceptible to external pressure.

There are five different types of stainless steel Pipes

Stainless steel is used in a variety of piping applications. Stainless steel is second only to carbon steel in Process industries due to its superior corrosion resistance characteristics. Stainless steel is an alloy steel with a chromium content of at least 10.5% and a carbon content of at least 1.20%.

SS is super corrosion-resistant and super easy to work with. It’s made by coating the surface of stainless steel with a non-reactive film of chromium oxide called Cr2O3. This film sticks to the metal and stops it from corroding. When the microstructure of Stainless Steel changed, its properties changed as well. Based on these changes, Stainless Steel can be categorized as follows;

1. Austenitic stainless steel

Stainless steels are made with a lot of different metals like chromium, nickel, manganese, and nitrogen, which are added to the iron base to give them their unique look.

AusteniticStainless steel has some really great qualities. Here’s a list of some of them.

  • Austenitic Stainless steel is magnetic-free and highly corrosion-resistant.

It doesn’t attract magnets and is immune to rust and corrosion due to exposure to moisture, chemicals and acids.

  • Excellent weldability, Formability, Fabricability & Ductility

Austenitic Stainless steel is known for its high weldability, which means it’s easy to join or weld onto other materials. It’s also really versatile, meaning you can shape and bend it into all sorts of different shapes without it losing its shape.

  • High Corrosion Resistance at 1500°F High corrosion resistance at 1500°F

It’s a special kind of stainless steel that won’t corrode at high temperatures, so it’s great for use in places where temperatures are high, like industrial furnaces or processing plants.

  • Austenitic Stainless Steel is suitable for both low and high temperature service.

Austenitic Stainless steel has excellent mechanical properties over a broad temperature range, allowing it to be used in both low and high temperature applications.

  • This form of stainless steel is resistant to corrosion through cold working.

Cold working processes, including rolling, bending, and hammering, can cause plastic deformation in Austrian stainless steel, thus increasing its strength and hardness and improving its mechanical properties.

  • The FCC is a cubic structure that is centered around the face.

Austenitic Stainless steel has a special structure called face-centered cubic, which means the atoms are all in one place. This helps it to be strong, ductile, and tough.

  • This Pipes has a lot of power when it comes to dealing with cold temperatures.

Stainless steel can withstand even the coldest conditions, which is great for cold conditions or when it’s exposed to sudden shocks or loads. It’s used a lot in process industries and in industrial settings, and even cookware is made from austenite stainless steel.

Stainless steel is one of the most corrosion-resistant, weldable, and formable materials on the market. It’s used in a lot of different industries, like chemical, oil, gas, food, beverage, pharmaceutical, and many more. It’s also a popular choice for cookware because of its good hygiene, ability to resist corrosion, and great looks.

Types of stainless steel that can be used include Type 304, Type 304L, Type 316, and Type 316L. These types of stainless steel are used in a lot of different industries and have different compositions and properties depending on what they’re used for. Check out the graph below to see what types of stainless steel you can use.

2. Ferritic stainless steel

Ferritic stainless steel is a more cost-effective and corrosion-resistant steel than galvanized steel. Ferritic stainless steel has a magnetic nature and high carbon content, which can cause it to be brittle and not as corrosion-resistant as austenitic stainless. Carbon can cause carbides to form, which makes it harder for the material to resist corrosion and more likely to crack and break.

  • Ferritic Stainless Steel is not capable of being hardened by heat treatment.

Ferritic stainless steel isn’t as easy to harden as other stainless steel types because its microstructure doesn’t change much when it’s heated and cooled, so it’s not as easy to improve its mechanical properties with heat treatment.

  • Body-centered cubic (BCC) structure:

Ferritic stainless steel is made with a structure called body-centered cubic, which means all the atoms are in a lattice, with one atom in the middle of each one. This has a negative effect on the material, making it more fragile and less ductile than regular stainless steel.

  • High resistance to chloride stress corrosion cracking exists in ferritic stainless steel.

Ferritic stainless steel has a strong resistance to chloride stress corrosion cracking, which is a major benefit. This kind of corrosion manifests itself in chloride-rich settings, such as those that are marine or include chemical chlorides.

Ferritic stainless steel is frequently utilized in applications including naval equipment, petrochemical facilities, heat exchangers, and furnaces because of its resistance to this particular type of corrosion.

Ferritic stainless steel comes in types 409, 430, 439, 444, and 446. See the graph provided below.

3. Martensitic stainless steel

Martensitic stainless steel is an alloy of stainless steel that has a crystalline structure called martensitic. It can be aged and treated with heat to harden and soften it. One of the toughest forms of stainless steel now available, martensitic stainless steel is well known for its exceptional hardness. However, compared to austenitic stainless steel, it often exhibits inferior corrosion resistance.

  • High degrees of hardness are heat treatable:

Martensitic Stainless steel can be treated with heat to make it really tough, which is called quenching or tempering. Steel is heated up quickly to harden it and then cooled down again to make it softer. This process gives you more control over how hard the steel is and how tough it is.

  • Structure with altered crystallographic shape

When heat treatment is done on Martensitic stainless steel, the crystallographic structure changes from face-cantered to body-cantered. This causes the lattice structure to be distorted, which makes the material stronger and harder.

  • Uses of Manufacturing sports knives and multipurpose tools.

Stainless steel is a popular choice for sports knives, multipurpose tools, and more because it’s so tough and durable. It’s great for keeping your knife sharp and cutting, and it’s also tough enough to handle tough jobs.

Stainless steel isn’t great for things that need to be super resistant to corrosion or in harsh conditions, like knives and cutting tools. But it’s strong and tough, so it’s great for use in places where wear and tear is more important, like industrial applications. Check out the graph below to see examples of Type 405, Type 410, and Type 420.

4. Precipitation Hardening (PH) stainless steel

Precipitation Hardening Stainless Steels with are a type of alloys that resist corrosion. Some of them can be heated up to give you tensile strength of 850 MPa to 1700 MPa and yield strength of 520 MPa to over 1500 MPa.

Precipitation-hardened stainless steel, or PH stainless steel, is a special kind of stainless steel that has a special set of qualities.

  • Precipitation-hardened stainless steel can be heat-treated to a high strength and is magnetic:

PH stainless steel is usually magnetized because of its martensitic composition. It can also be heat treated to reach high tensile strength levels through precipitation hardening. Heat treatment is a process that causes fine particles to be precipitated into the steel matrix, making it stronger and harder.

  • Strong corrosion resistance and a very high strength-to-weight ratio:

Precipitated hardened stainless steel is super strong and lightweight, so it’s great for applications where you need to reduce weight without losing strength. Plus, it’s corrosion resistant, which is something you’d expect from stainless steel. It might not be as tough as austenitic steels, but it’s still pretty good.

  • It’s used to make parts and springs for planes.

The combination of high tensile strength, corrosion resistance, and low weight make precipitation hardened stainless steel an ideal material for aerospace applications.

Stainless steel is a popular material for making a lot of different parts of planes, landing gear, engines, and fastenings. It’s really strong, so it’s great for use in springs that need to be strong and resistant to corrosion. Popular examples of this type of steel are 17-7H and 17-4H.

5. Duplex or Super Duplex stainless steel

Duplex or Super Duplex stainless steels are built on a 25% chromium alloying addition, whereas duplex stainless steels are built on a 22% chromium alloying addition.

A well-balanced blend of austenite and ferrite phases defines the microstructure of Duplex and Super Duplex stainless steel. Austenitic and ferritic stainless steels’ respective characteristics are combined in this dual-phase structure.

  • Benefits of austenite and ferrite stainless steel are combined in this grade:

Stainless steel made from both ferrite and austenite phases has some great benefits. It’s stronger and more resistant to corrosion than ferrite steel, and it’s also more durable and formable than austenite steel. This means it’s better for a lot of different uses.

  • Excellent resistance to pitting and crevice corrosion

Crevice corrosion is a type of corrosion that can occur in confined areas or in crevices, where corrosive solutions have the potential to accumulate. Durable stainless steel, such as Duplex or Super Duplex, has a dual phase microstructure, which increases its resistance to these types of corrosion and makes it suitable for use in harsh conditions, such as in seawater.

  • High resistance to stress corrosion cracking and high strength:

Stainless steel made from Duplex or Super Duplex has a lot of strength, so it’s great for building materials that need to be strong. Plus, it’s really tough when it comes to corrosion, since it can handle a lot of stress and corrosion. That’s especially important when you’re working in tough places like oil and gas drilling.

  • Used in heat exchangers, structural applications, and the seawater system:

Duplex and Super Duplex stainless steel are widely utilized in a variety of industries because of their higher corrosion resistance, strength, and resistance to stress corrosion cracking.

Stainless steel is used in a lot of different types of marine applications, from offshore platforms to desalinated plants. It’s strong and corrosion-resistant, so it’s great for heat exchancers, structural parts, and other tough jobs in the oil and gas industry, chemical production, pulp and paper, and more. Examples of stainless steel made from Duplex or Super Duplex include EX-UNS (S32205), SEC (S31803), and SEC (S32760).

The ASTM Materials Grades for stainless steel are the most commonly used.

No.GradesCommon Use
1ASTM A999Alloy and stainless steel pipe general requirements
2ASTM A954Pipe that is seamless and welded out of austenitic chrome-nickel-silicon alloy
3ASTM A949Ferritic/Austenitic Seamless Spray-Formed Stainless Steel Pipe
4ASTM A943Austenitic Seamless Spray-Formed Stainless Steel Pipe
5ASTM A928Electric Fusion Welded Ferritic/Austenitic (Duplex) Stainless Steel Pipe with Filler Metal
6ASTM A872Ferritic/Austenitic Stainless Steel Pipe Centrifugally Cast for Corrosive Environments
7ASTM A814Cold-worked austenitic stainless steel pipe with welding
8ASTM A813Austenitic stainless steel pipe that has been single- or double-welded
9ASTM A790Ferritic/Austenitic Seamless and Welded Stainless Steel Pipe
10ASTM A451Austenitic steel pipe centrifugally cast for high-temperature service
11ASTM A409For Corrosive or High-Temperature Service, Welded Large Diameter Austenitic Steel Pipe
12ASTM A376For use in high-temperature central station service, seamless austenitic steel pipe
13ASTM A358Austenitic chrome-nickel alloy steel pipe for high-temperature &, welded by electric fusion
14ASTM A312Austenitic stainless steel pipes that have been heavily cold worked, seamless, and welded

Conclusion

Mcneil Instruments Inc. stands as a prominent manufacturer, exporter, and supplier of Stainless Steel Pipes, making it a vital player in the global stainless steel industry. Their dedication to quality, precision, and innovation ensures that their stainless steel pipes find versatile applications across various industries. With a commitment to excellence and a reputation for delivering top-notch products, Mcneil Instruments Inc. continues to be a trusted partner for those seeking reliable stainless steel solutions. Whether used in construction, manufacturing, or other applications, McNeil Instruments Inc.’s Stainless Steel Pipes exemplify the company’s unwavering commitment to meeting the diverse needs of its customers while maintaining the highest standards of quality.